高一數(shù)學補課課程_數(shù)學知識點總結(jié)歸納
集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
許多學生在溫習數(shù)學知識點時,由于之前沒有做過系統(tǒng)的總結(jié),后面導致溫習時整體效率不高,下面小編為人人帶來數(shù)學知識點總結(jié)歸納,希望對您有所輔助!
求動點的軌跡方程的常用方式:求軌跡方程的方式有多種,常用的有直譯法、界說法、相關(guān)點法、參數(shù)法和交軌法等。
直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方式通常叫做直譯法。
界說法:若是能夠確定動點的軌跡知足某種已知曲線的界說,則可行使曲線的界說寫出方程,這種求軌跡方程的方式叫做界說法。
相關(guān)點法:用動點Q的坐標x,y示意相關(guān)點P的坐標x0、y0,然后裔入點P的坐標(x0,y0)所知足的曲線方程,整理化簡捷獲得動點Q軌跡方程,這種求軌跡方程的方式叫做相關(guān)點法。
參數(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,獲得方程,即為動點的軌跡方程,這種求軌跡方程的方式叫做參數(shù)法。
交軌法:將兩動曲線方程中的參數(shù)消去,獲得不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方式叫做交軌法。
直譯法:求動點軌跡方程的一樣平常步驟
①建系——確立適當?shù)淖鴺讼?
②設(shè)點——設(shè)軌跡上的任一點P(x,y);
③列式——列出動點p所知足的關(guān)系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證實——證實所求方程即為相符條件的動點軌跡方程。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
,因人而宜的,想要學的輔導有用的,不想學的隨便怎么輔導都是無濟于事的 高三輔導:高三各科用什么輔導書好呢? 高三學習復習,以課本、筆記、試卷等為基礎(chǔ),最基本的要學會跟著老師走,把課聽好。,聚集的觀點
聚集是數(shù)學中最原始的不界說的觀點,只能給出,形貌性說明:某些制訂的且差其余工具聚集在一起就稱為一個聚集。組成聚集的工具叫元素,聚集通常用大寫字母A、B、C、…來示意。元素常用小寫字母a、b、c、…來示意。
聚集是一個確定的整體,因此對聚集也可以這樣形貌:具有某種屬性的工具的全體組成的一個聚集。
元素與聚集的關(guān)系元素與聚集的關(guān)系有屬于和不屬于兩種:元素a屬于聚集A,記做a∈A;元素a不屬于聚集A,記做a?A。
聚集中元素的特征
(確定性:設(shè)A是一個給定的聚集,x是某一詳細工具,則x或者是A的元素,或者不是A的元素,兩種情形必有一種且只有一種確立。例如A={0,,可知0∈A,A。
(互異性:“聚集張的元素必須是互異的”,就是說“對于一個給定的聚集,它的任何兩個元素都是差其余”。
(無序性:聚集與其中元素的排列順序無關(guān),如聚集{a,b,c}與聚集{c,b,a}是統(tǒng)一個聚集。
聚集的分類
聚集科憑證他含有的元素個數(shù)的若干分為兩類:
有限集:含有有限個元素的聚集。如“方程+0”的解組成的聚集”,由“組成的聚集”,它們的元素個數(shù)是可數(shù)的,因此兩個聚集是有限集。
無限集:含有無限個元素的聚集,如“到平面上兩個定點的距離相即是所有點”“所有的三角形”,組成上述聚集的元素不能數(shù)的,因此他們是無限集。
稀奇的,我們把不含有任何元素的聚集叫做空集,記錯F,如{x?R|+0}。
特定的聚集的示意
為了謄寫利便,我們劃定常見的數(shù)集用特定的字母示意,下面是幾種常見的數(shù)集示意方式,請切記。
成都高中文化課指點機構(gòu)電話:15283982349,上高中輔導班有用沒? 現(xiàn)在很多的孩子在上了高中都會去補課,但是學習很好的孩子就不去這種地方,他們還想找到一個家教,來給自己的補習,可能他們所用的方法,是和其他的同學不一樣的,但是找家教,孩子的學習問題還是有很多,這是為什么?